Shifted encoding strategy in retinal luminance adaptation: from firing rate to neural correlation.

نویسندگان

  • Lei Xiao
  • Mingsha Zhang
  • Dajun Xing
  • Pei-Ji Liang
  • Si Wu
چکیده

Neuronal responses to prolonged stimulation attenuate over time. Here, we ask a fundamental question: is adaptation a simple process for the neural system during which sustained input is ignored, or is it actually part of a strategy for the neural system to adjust its encoding properties dynamically? After simultaneously recording the activities of a group of bullfrog's retinal ganglion cells (dimming detectors) in response to sustained dimming stimulation, we applied a combination of information analysis approaches to explore the time-dependent nature of information encoding during the adaptation. We found that at the early stage of the adaptation, the stimulus information was mainly encoded in firing rates, whereas at the late stage of the adaptation, it was more encoded in neural correlations. Such a transition in encoding properties is not a simple consequence of the attenuation of neuronal firing rates, but rather involves an active change in the neural correlation strengths, suggesting that it is a strategy adopted by the neural system for functional purposes. Our results reveal that in encoding a prolonged stimulation, the neural system may utilize concerted, but less active, firings of neurons to encode information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifted encoding strategy in retinal luminance adaptation : from firing rate

Title: Shifted encoding strategy in retinal luminance adaptation: from firing rate 1 to neural correlation 2 Running title: Information encoding during adaptation 3 Authors: Lei Xiao, Mingsha Zhang, Dajun Xing, Pei-Ji Liang and Si Wu 4 Affiliations: 5 Department of Biomedical Engineering, Shanghai Jiao Tong University, 800 6 Dong Chuan Road, Shanghai 200240, China. 7 Institute of Neuroscience, ...

متن کامل

Adaptive neural information processing with dynamical electrical synapses

The present study investigates a potential computational role of dynamical electrical synapses in neural information process. Compared with chemical synapses, electrical synapses are more efficient in modulating the concerted activity of neurons. Based on the experimental data, we propose a phenomenological model for short-term facilitation of electrical synapses. The model satisfactorily repro...

متن کامل

Retinal ganglion cell adaptation to small luminance fluctuations.

To accommodate the wide input range over which the visual system operates within the narrow output range of spiking neurons, the retina adjusts its sensitivity to the mean light level so that retinal ganglion cells can faithfully signal contrast, or relative deviations from the mean luminance. Given the large operating range of the visual system, the majority of work on luminance adaptation has...

متن کامل

Peaked Encoding of Relative Luminance in Macaque Areas

It is widely presumed that throughout the primate visual pathway neurons encode the relative luminance of objects (at a given light adaptation level) using two classes of monotonic function, one positively and the other negatively sloped. Based on computational considerations, we hypothesized that early visual cortex also contains neurons preferring intermediate relative luminance values. We te...

متن کامل

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. Recent spiking neuron models like the adaptive Spike Response Model implement adaptation as additive fixed-size fast spike-triggered threshold dynamics and slow spike-triggered currents. Such adaptation accurately models neural spiking behavior over a limited dynamic in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 110 8  شماره 

صفحات  -

تاریخ انتشار 2013